Non-uniformly Expanding Dynamics in Maps with Singularities and Criticalities
نویسنده
چکیده
We investigate a one-parameter family of interval maps arising in the study of the geometric Lorenz ow for non-classical parameter values. Our conclusion is that for all parameters in a set of positive Lebesgue measure, the map has a positive Lyapunov exponent. Furthermore, this set of parameters has a density point which plays an important dynamic role. The presence of both singular and critical points introduces interesting dynamics, which have not yet been fully understood.
منابع مشابه
Ja n 20 06 LARGE DEVIATIONS FOR NON - UNIFORMLY EXPANDING MAPS
We obtain large deviation results for non-uniformly expanding maps with non-flat singularities or criticalities and for partially hy-perbolic non-uniformly expanding attracting sets. That is, given a continuous function we consider its space average with respect to a physical measure and compare this with the time averages along orbits of the map, showing that the Lebesgue measure of the set of...
متن کاملLarge Deviations for Semiflows over a Non-uniformly Expanding Base
A. We obtain a large deviation bound for continuous observables on suspension semiflows over a non-uniformly expanding base transformation with non-flat singularities or criticalities, where the roof function defining the suspension behaves like the logarithm of the distance to the singular/critical set of the base map. That is, given a continuous function we consider its space average w...
متن کامل2 00 6 Large Deviations for Non - Uniformly Expanding Maps
We obtain large deviation results for non-uniformly expanding maps with non-flat singularities or criticalities and for partially hy-perbolic non-uniformly expanding attracting sets. That is, given a continuous function we consider its space average with respect to a physical measure and compare this with the time averages along orbits of the map, showing that the Lebesgue measure of the set of...
متن کامل1 8 Ju l 2 00 6 LARGE DEVIATIONS FOR NON - UNIFORMLY EXPANDING MAPS
We obtain large deviation bounds for non-uniformly expanding maps with non-flat singularities or criticalities and for partially hyperbolic non-uniformly expanding attracting sets. That is, given a continuous function we consider its space average with respect to a physical measure and compare this with the time averages along orbits of the map, showing that the Lebesgue measure of the set of p...
متن کاملLarge Deviations Bounds for Non-uniformly Hyperbolic Maps and Weak Gibbs Measures
We establish bounds for the measure of deviation sets associated to continuous observables with respect to weak Gibbs measures. Under some mild assumptions, we obtain upper and lower bounds for the measure of deviation sets of some non-uniformly expanding maps, including quadratic maps and robust multidimensional non-uniformly expanding local diffeomorphisms.
متن کامل